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“When I raise my arm, my arm goes up. And the problem arises:
What is left over if I subtract the fact that my arm goes up from the fact that I raise my arm?”

— Ludwig Wittgenstein, Proposition 614, The Philosophical Investigations

" Above the sea’s great sweep,
view beacons beyond the leap,

to find the path, you have to keep.

Atop the sky’s grand steep,
look at the far light in the deep,
guidance from yonder we keep. ”

— By the help of OpenAl’s GPT-4 (2023)
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The Point of No Return in Action Cancellation: Deciphering Its Influence on the
Human Sense of Agency via Real-Time Brain-Computer Interfaces

by Hamed GHANE

Human volition, composed of intention and agency as subjective experiences, is of-
ten considered one of the most distinguishing characteristics of our species. Despite
extensive debate around intention due to its implications on free will, the concept of
agency has not received equivalent attention. The seminal work of Schultze-Kraft et
al., 2016 advanced our understanding of voluntary actions by quantifying the "point
of no return’ in movement initiation. This crucial temporal threshold is reached ap-
proximately 200 ms before an action, beyond which it becomes almost impossible to
cancel the imminent action. Our research expands on this concept by investigating
how the "point of no return’ influences our post-action sense of agency. By utiliz-
ing a Brain-Computer Interface and machine learning-based techniques for immi-
nent action detection, we propose a novel hypothesis: our sense of agency regards
an imminent action as “initiated” once the "point of no return’ is crossed, which in
turn shapes our perception of agency following an action. Our experimental design
consists of two stages—a preparatory stage for data collection and classifier train-
ing, and a main real-time experiment designed to test the hypothesis in real-time.
This setup enables us to study how the timing of an action’s outcome relative to the
"point of no return” impacts the perceived sense of agency. This thesis, however, only
covers the first stage of the experimental design, namely the data collection and clas-
sifier training. Our findings could potentially open up new avenues of research into
the intricacies of human agency and volition, and may have significant implications
for designing human-machine interface technologies aimed at enhancing user’s per-
ceived control and interaction.


HTTPS://WWW.UPF.EDU/
https://www.upf.edu/web/cbc
https://www.upf.edu/en/web/universitat/-/departament-de-tecnologies-de-la-informacio-i-les-comunicacions

Acknowledgements

The first words of gratitude are for my son, Roham, a little man with a big heart.
His patience and love throughout this lengthy process have been an immeasurable
source of strength and motivation. Thank you, my sweetheart.

To my parents, without their unwavering and unconditional support and faith in
me, none of this would have been possible at all.

I am sincerely grateful to my supervisor, Salvador Soto Faraco. I appreciate not only
his guidance throughout this process but also his valuable suggestion to explore this
captivating topic, which set the course of this enriching journey.

Special thanks to Xavi Mayoral, who was always there, at the CBC lab, to lend a
hand when I faced challenges and couldn’t make any progress.

My gratitude also goes out to Irene Vigué-Guix for her time in familiarizing me with
the BCI setup used in her experiment. Furthermore, I am appreciative of the people
from the Multisensory Research Group, particularly Alice Drew and Angela Marti
for their generous help and assistance.

I'would also like to appriciate those classmates from the CBC2023 class who partici-
pated in this research. Their willingness to participate and contribute has been truly
valuable to this study.

Lastly, a special acknowledgment for ChatGPT-4. By extending the definition of
friend, it stands as the most patient, knowledgeable, and helpful friend I have ever
had. Its assistance during this journey has been invaluable.



Vi

Contents

Statement of Contribution

Abstract
Acknow

1 Intro

1.1

1.2

1.3

1.4

ledgements

duction
Voluntary Action and Human Agency: Bridging Philosophy, Neuro-
science, and Human-Brain Interface . . . ... ... ... ... .....
Investigation Parameters: Defining SoA and Actions . . . . . ... ...
121 Narrowing the Conceptof SoA . . . ... .. ...... .. ...
1.2.2 Defining Actionand Its Types . . . . . .. ... .. ... .....
Measuring the SoA: Methods and Challenges . . . . .. ... ... ...
1.3.1 Implementing a BCI Setup for SOA Measurement: Embracing
the Libet Paradigm . . . . .. ... .................
Review of the Journey SoFar . . ... .. ... ... ... .. .. ...,

2 Hypothesis and Experimental Design

21

2.2
2.3

24
25
2.6

3 Resu
3.1
3.2
3.3

Readiness Potential and Intention Detection . . . . . . ... ... .. ..
2.1.1 Readiness Potential;, Whatisit? . . . ... ... ... ... ....
The Shift to Machine Learning: Rationale and Preliminary Studies . . .
Building Upon the Foundation: Revisiting the Study by (Schultze-
Kraftetal.,2016) . . ... ... . . ..
Formulating the Hypothesis . . . . . ... ... ... ... .......
Expectations . . . .. ... ... ... .
Experimental Design . . . . ... ... .. ... ... ... . ... ..
2.6.1 C(lassification Algorithm Selection . . .. ... ... ... ... ..
2.6.2 Feature Extraction . ... ... ... .. ... ...........
Feature Selection . . . ... .. ... ... ... ..........
Extract the Feature Vector . . . . . ... ... .. ... ......
2.6.3 Preparatory Stage: Collecting Subject Data and Classifier Train-
INg . ...
Gathering Data and Subject-Specific Classifier Training . . . . .
Optimal EEG Channel Selection . . . ... ............
2.6.4 Main Real-Time Experiment. . . . . . ... ............

Its, Discussion and Future Plan

Some Extra Practical Considerations and Challenges . . . . . . ... ..
Results . . . . . . . . . e
FuturePlan. . . . . . . . . . ... o

iii

iv

10
10
10
11
12
12



3.4 Discussionand Conclusion . . . . . . . . . . . i e
Bibliography

A Implicit Methods for Measuring SoA
A.0.1 Intentional Binding . . . ... ... ... ... ...........
A.0.2 Sensory Attenuation . . . ... ... ... ... 0 L.
A.0.3 Visual Attention (Mainly from (Wen and Imamizu, 2022))

B Real-Time RP Detection Challenges
Readiness Potential; It's Amplitude and Shape . . . . . ... ..
Readiness Potential; False Positive . . . . . . ... ... ... ..
Readiness Potential; Onset or Buildup? . . ... ... ... ...
Readiness Potential; Eye movement Artefact . . . ... ... ..

C Strategies for Optimal Classification in Real-Time BCI
C.0.1 Gaze-Stabilized Trial Initiation . . . . . ... ... ... ... ..
C.0.2 Defining a Feature Extraction Temporal Window . . ... ...
C.0.3 C(lassifier-Driven Action Inhibition Period . .. ... ... ...

vii

24



viii

List of Figures

1.1
1.2
1.3
1.4

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2

Al

B.1

Subjective Components of a Voluntary Action. . . . .. ... ... ... 2
Typesof Action . . .. ... ... ... .. .. ... .. . . 3
Libet Experiment . . . .. .. ... ... .. ... .. ... .. .. ... 4
ResearchRoadmap . . .. ... ... ... .. .. ... .. .. ..., 5
Temporal profileof the RP) . . .. ... ... ... .. .. ... .. ... 7
Rough timeline of the main experiment . . . ... ... ... ...... 9
Feature Extraction Process . . . . . ... .................. 12
Feature Concatenation Process . . . ... .. ... ... ......... 13
ParticipantSetup . . . . ... .. ... ... 15
Timeline of the Prepratory Stage Experiment . . . ... .. ... ... .. 15
Timeline of the Time Experiment . . . . . ... ... ... ........ 18
EEG Electrode Montage . . . . ... .. .. ................ 21
Flow Diagram of the ThesisStages . . . . . . ... ... .. ....... 25
Binding Effect . . . . ... ... ... ... L o 29
RPOnsetorBuildup . .. ... ... ... ... .. ... .. .. ..., 31



List of Tables

3.1 Trained Classifier’s Information

iX



List of Abbreviations

SoA Sense of Agency

BCI  Brain Computer Interface

RP  Readiness Potential

LRP Lateralized Readiness Potential



To the duty that accompanies the privilege of Intellect. ..

xi






1. Introduction

1.1 Voluntary Action and Human Agency: Bridging Philoso-
phy, Neuroscience, and Human-Brain Interface

Throughout history, the nature of human action and our abilities as agents have been
central themes in philosophy. The concept of agency is intrinsically linked to the
idea of human freedom and the extent to which individuals can exert control over
their actions. This fundamental inquiry, dating back to the early days of philosophi-
cal thought, has driven investigations into human consciousness and self-awareness
(Leibniz, 1991).

Leibniz’s "Theodicy" exemplifies this line of inquiry, posing the problem of necessity
and questioning whether humans are truly free agents or merely subject to the de-
terminism of a pre-established order (Leibniz, 1985). This understanding of agency
presupposes individuals” ability to identify themselves as agents capable of initiat-
ing and controlling actions. Such self-awareness is fundamental to human nature,
permitting purposeful behavior and decision-making that reflects individuals” in-
tentions, desires, and beliefs.

Transitioning from traditional philosophical debates into the realm of contemporary
neuroscience research, as depicted in Figure 1.1 , Haggard, 2017 delineates volun-
tary action as entailing two distinct subjective experiences: intention and the sense
of agency (SoA). The concept of intention primarily refers to the cognitive processes
underlying the planning and initiation of actions. It enters into the vast and often
contested discussion about human freedom in decision-making and is closely tied
to the concept of "free will’, a term we consciously avoid here to prevent getting en-
tangled in complex philosophical debates. While intention is typically probed via
introspective methods, it has been empirically investigated through various experi-
mental designs as well.

Contrarily, SoA deals with the subjective experience of controlling one’s actions and
perceiving oneself as the author of those actions. Unlike intention, the SoA is of-
ten studied retrospectively, examining how individuals perceive their actions after
their occurrence. This distinction helps us better channel our research efforts to ex-
plore the unique aspects of each concept and ensure that our investigations remain
grounded within their respective theoretical frameworks.

Focusing on SoA, our research aims to delve deeper into the subjective experience
associated with the execution of a voluntary action. The exploration of SoA holds
promise in illuminating the human condition, our freedom, our responsibilities, and
our control over actions. Probing the neural and cognitive mechanisms underpin-
ning SoA, we aspire to demystify the processes enabling us to experience ourselves
as agents. In doing so, we inch closer to solving one of the "sphinxes of science," as
termed by Leibniz, 1985.
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FIGURE 1.1: Subjective components of a voluntary action.

The SoA also takes center stage in the realms of ethics and law, particularly in the
context of emerging technologies like brain-computer interfaces (BCls). Deciphering
responsibility for actions performed through these devices raises urgent questions.
Seminal works by Cornelio et al., 2022 and Wen and Imamizu, 2022 elucidate SoA’s
role in human-machine interactions and underscore its importance in devising user-
centric and ethically sound technologies. These investigations collectively highlight
SoA’s potential to bolster human performance while grappling with the ethical com-
plexities spurred by technological advancement.

1.2 Investigation Parameters: Defining SoA and Actions

This section elaborates on the specific definitions and parameters that guide our
investigation of the SoA and voluntary action. We will discuss the distinct interpre-
tation of SoA adopted for this thesis and provide a definition for action, focusing on
the particular type of voluntary action under study:.

1.2.1 Narrowing the Concept of SoA

In line with Haggard’s perspective (Haggard, 2017), our investigation of SoA is more
specifically oriented. Whereas some definitions interpret SoA as a broad subjective
feeling of capability to act (or self-efficacy), we take a more restricted approach. We
center our exploration on the experiential component of SoA, which emerges before,
during, and after an actual muscular movement. Therefore, throughout this thesis,
SoA refers to the subjective experience related to the execution of a particular motor
action.

1.2.2 Defining Action and Its Types

Clarity necessitates a precise definition of action and the identification of the specific
type of action our thesis focuses on.

Actions form the core of our everyday experiences and are fundamental for achiev-
ing our goals. It’s argued that our brains have evolved primarily to meet the needs
of action, rather than solely focusing on cognitive functions (Llinas, 2002). Human
actions can generally be divided into two categories: stimulus-dependent reactions
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FIGURE 1.2: Two types of actions; Above: Stimulus-dependent and
below: non[aparent]-stimulus-dependent

and stimulus-independent voluntary actions. Reactions are direct responses to ex-
ternal stimuli, while voluntary actions are internally initiated, uninfluenced by ex-
ternal stimuli, and accompanied by unique subjective experiences like the sensation
of personal choice (Haggard, 2017).

Most daily actions lie on a continuum between stimulus-dependent and stimulus-
independent actions. For instance, answering a ringing phone is voluntary (stimulus-
independent) as we decide to answer, and reactional (stimulus-dependent) as the
decision is triggered by the sound (Khalighinejad, 2022). The line between internal
(voluntary) and external (stimulus-dependent) agency is crucial but challenging to
delineate.

This challenge stems from the difficulty of defining an “agent.” Linked to the concept
of 'self,” the definition of an agent has been a contentious philosophical subject for
centuries. Furthermore, the complex relationship between the agent and their en-
vironment, as well as the intricate processes governing decision-making and action
initiation, add to the complexity.

Haggard, 2016 highlights that neuroscience often defines voluntary action by exclu-
sion, characterizing it as not caused by stimuli. The focus is less on what provokes
these actions and more on what doesn’t—namely, stimuli.

For this thesis, we adopt a pragmatic criterion for differentiating between voluntary
and involuntary actions. We deem an action voluntary if no apparent, discernible
external stimulus perceived by an average human triggers the action, something like
what has been ilustrated in Figure 1.2. This approach provides a working definition
of voluntary actions, enabling us to investigate SoA in a more structured and focused
manner.

This pragmatic approach enables us to explore the complexities of the SoA while
recognizing the limitations imposed by the lack of a definitive boundary between
the internal and external aspects of an agent. By examining the factors that influ-
ence human behavior and the mechanisms that underlie voluntary actions, we can
gain valuable insights into the SoA and its potential implications for autonomy and
responsibility.

1.3 Measuring the SoA: Methods and Challenges

The SoA is a subjective experience, making it complex to measure. Due to its multi-
faceted nature, a variety of methodologies are employed to capture its nuances. Two
primary methods exist: explicit and implicit.
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FIGURE 1.3: The classic Libet-style experiment; from Haggard, 2008 .

Explicit methods often involve self-report tasks, such as answering yes/no ques-
tions or rating the level of control over an event. These methods provide a direct
and straightforward approach to gauging an individual’s perceived agency. Despite
their simplicity, explicit methods may sometimes be influenced by factors such as
mood, expectations, or prior experiences, which could potentially affect their preci-
sion.

On the other hand, implicit methods involve evaluating the differences in perception
and behavior between situations when individuals feel a SOA versus when they do
not, or between situations when individuals experience strong versus weak agency.
These methods, being less susceptible to the individual’s momentary mental states,
offer a more nuanced understanding of SoA.

1.3.1 Implementing a BCI Setup for SoA Measurement: Embracing the
Libet Paradigm

Our primary objective is to establish a firm basis for the investigation. This involves
the setup and configuration of a Brain-Computer Interface (BCI) system in our lab,
which aligns with the implementation of a Libet-style experimental platform (Fig-
ure 1.3).

In this paradigm, participants perform self-paced actions, such as pressing a button,
while their brain activity is monitored using electroencephalography (EEG). This
design enables us to examine the relationship between conscious intention, action
execution, and the perception of control, thereby uncovering crucial insights into
the neural underpinnings of the SoA.

Given the time constraints and the intricacies involved in setting up the BCI, the
current research will primarily focus on using explicit methods to measure the SoA.
Despite the potential limitations of these methods, they offer an effective means of
exploring our research questions and establishing an initial proof of concept.
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FIGURE 1.4: A roadmap depicting our journey from initial idea to our
current thesis focus.

1.4 Review of the Journey So Far

In summary, our exploration began with the concept of SoA, leading us to investi-
gate agency arising from motor actions. We proceeded to define actions and intro-
duce their two primary types: voluntary and stimulus-dependent actions. Recog-
nizing the challenge of establishing a clear boundary between these categories, we
addressed the difficulty in defining the agent and the notion of self. Despite the com-
plexities involved, we adopted a practical, though somewhat simplistic, definition
of voluntary actions. Then we introduced implicit and explicit measurement of SoA,
each with their pros and cons. Finally, we selected a Libet-style experimental design
for our study.

The path that has led us to the current thesis topic is shown in Figure 1.4, encapsu-
lating the key aspects discussed in the introduction section.



2. Hypothesis and Experimental
Design

2.1 Readiness Potential and Intention Detection

Determining intentionality has always held immense interest in the fields of BCIs,
neuroscience, and cognitive psychology, with the Readiness Potential (RP) as a focal
neural signal in this pursuit. As our research aims to explore the SoA associated with
actual actions, rather than the mere capability of performing actions, understanding
and detecting RP is critical. As previously stated, we have chosen the Libet-style ex-
periment as our platform to capture the subject’s intention prior to action execution.
While the famous Libet experiment, described in Libet et al., 1983, wasn't the first
to detect RP, its intelligent design spotlighted the association of RP with voluntary
movement, igniting profound debates around the concept of free will both in the
scientific and philosophical communities. This section will unpack the complexities,
challenges, and debates surrounding the real-time detection of RP and its role in in-
tention detection. The groundwork laid here serves to contextualize our subsequent
exploration of the transition from traditional RP-centric methods to contemporary
machine learning approaches in intention detection.

2.1.1 Readiness Potential; What is it?

The Readiness Potential (RP), also known as Bereitschaftspotential (BP), is a neu-
ral signal associated with voluntary movement and has been utilized to challenge
the concept of free will. First discovered by Kornhuber and Deecke, 2016 (original
paper: Kornhuber and Deecke, 1965), the RP is identified through an analysis of elec-
troencephalogram (EEG) data collected during experiments involving spontaneous
or self-initiated actions. By time-locking EEG recordings to the onset of movement
and averaging them, a gradually increasing negative electrical potential becomes
apparent preceding the movement’s initiation.

The most significant breakthrough in understanding the RP and its implications
came with the famous Libet experiment. According to Benjamin Libet’s findings,
the RP begins 550 ms before the act, but human subjects become aware of their in-
tention to act 350-400 ms after the RP starts, yet 200 ms before the motor act. Hence,
Libet proposed that the initiation of a voluntary act appears to start in the brain
unconsciously, well before the person consciously knows he wants to act, poten-
tially challenging the conventional understanding of free will (Libet, Freeman, and
Sutherland, 1999).

Despite these findings, Libet did not reject the concept of free will entirely. He pro-
posed the possibility of a conscious veto, wherein our conscious intention could
override or stop the unconscious initiation of an action (Libet, Freeman, and Suther-
land, 1999). An interval of approximately 150ms between the conscious will (W)
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and the actual movement allows for such a veto. However, only about 100ms of
this window is practically available, as the final 50ms before muscle activation is
the time for the primary motor cortex to activate the spinal motor nerve cells, and
during this time, the act proceeds to completion with no possibility of stopping it
(Libet, Freeman, and Sutherland, 1999). The temporal profile of the RP is illustrated
in Figure 2.1.

Libet’s interpretation of RP and its implications for free will continue to be discussed
in contemporary research, and the concept of the conscious veto has been particu-
larly controversial. Some scientists have argued that the veto, like the conscious in-
tention, could itself be a consequence of some preceding unconscious neural activity.
A breakthrough study by Schultze-Kraft et al., 2016 further elucidated this debate by
investigating the timing window for this conscious veto, providing an in-depth ex-
amination of when we can effectively veto self-initiated movements (Schultze-Kraft
et al., 2016). This work, alongside others, underlines that conscious veto might in-
fluence brain activity in ways we do not yet fully understand (Haggard, 2008). Nev-
ertheless, the concept of a veto window where conscious intention can override un-
conscious initiation of action remains a cornerstone in the study of voluntary action
and the neuroscience of free will.

2.2 The Shift to Machine Learning: Rationale and Prelimi-
nary Studies

Recognizing the complexities and ambiguities associated with traditional readiness
potential detection, depicted in Appendix A, our research pivots towards employ-
ing machine learning. This transition is motivated substantially by the ground-
breaking work of Schultze-Kraft et al., 2016, who successfully harnessed machine
learning classifiers to capture subjects’ intentions rather than solely attempting to
detect readiness potentials. Their studies provide a strong foundation, exhibiting
the promising potential of machine learning in this research realm.
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In addressing the inherent challenges associated with traditional methodologies—specifically
the debates surrounding the buildup or onset of readiness potential and the question

of causality between RP detection and imminent action—machine learning emerges

as a practical tool. It redirects the focus towards the pragmatic aim of imminent ac-

tion detection, a target better suited to the strengths of machine learning classifiers.

From a technical perspective, machine learning confers significant advantages. In-
stead of depending on a constrained set of electrodes to seek readiness potentials—an
endeavor fraught with difficulties—machine learning allows for the use of a broader
set of electrodes for classification. This approach could potentially enhance the reli-
ability of imminent action detection, while possibly providing a deeper exploration
into neural activities associated with the SoA.

Moreover, the intrinsic value of data science comes to the fore with the application
of machine learning, as it can potentially unearth meaningful patterns in the vast
volume of EEG data that are not yet understood. It allows us to leverage the rich,
high-dimensional data provided by EEG, extracting and utilizing complex, possibly
nonlinear patterns that may be vital for reliable and robust intention detection. This
represents a marked departure from traditional methodologies that typically rely on
predefined features derived from our current understanding of brain activity, which,
while valuable, may not encapsulate the full story.

In the following sections, we will delve into the specifics of our machine learning
approach, detailing our experimental design, hypotheses, and the possible implica-
tions of the study.

2.3 Building Upon the Foundation: Revisiting the Study by
(Schultze-Kraft et al., 2016)

The influential work of Schultze-Kraft et al., 2016 profoundly deepened our under-
standing of voluntary actions. They introduced the concept of a "point of no return’
in movement initiation, which is a temporal threshold following the onset of neu-
ral preparation but preceding action execution. Beyond this "point of no return,’
approximately 200 ms before the action, it becomes impossible to cancel a planned
motor action.

Their findings not only echo but also refine Libet’s notion of a conscious veto. Libet
had proposed that a voluntary act could be canceled within a window of approx-
imately 150 ms before the movement. However, the results from Schultze-Kraft et
al., 2016 provide a crucial clarification: vetoing a movement becomes impossible
beyond the 200 ms threshold before movement onset.

Interestingly, this "point of no return” discovered by Schultze-Kraft et al. closely
aligns with Libet’s proposed "W’ time, when the awareness of the intention to act
emerges. According to Libet, the "W’ time occurs roughly 200 ms before the action
(see Figure 2.1), which suggests a paradoxical situation: the decision to cancel an
action might occur at a point when we are not even fully conscious of the decision
to act. This compelling observation opens up an intriguing area of exploration into
the mechanisms underlying our subjective experience of intention and agency.

While Schultze-Kraft et al.’s work focused on pre-action neural processes and their
relation to the cancellation of an action, our research aims to extend this concept
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further. We propose to explore how the timing of this ‘point of no return” influences
our SoA following an action.

Inspired by Schultze-Kraft et al.’s findings, the following sections of our research
journey build upon their groundbreaking study. We aim to delve deeper into the
temporal dynamics of voluntary actions, the SoA, and how these can be better un-
derstood through machine learning-based imminent action detection methods. This
shift away from traditional readiness potential detection methodologies promises to
open up new possibilities for real-time intention recognition.

2.4 Formulating the Hypothesis

Grounding our research on the findings of (Schultze-Kraft et al., 2016), we put forth
the following hypothesis related to the ‘point of no return” and its impact on the
perception of agency:

We hypothesize that the point of no return, occurring approximately 200 ms before
a voluntary action, serves as a temporal marker that significantly shapes our post-
action sense of agency. Specifically, once this point is crossed, the impending action
is perceived as initiated in our subjective experience, thereby evoking a SoA even
before the physical occurrence of the action. Consequently, if the outcome of the
action is presented within this 200 ms window, subjects will still perceive a strong
SoA, despite the physical action not having occurred. In contrast, if the outcome is
presented before the point of no return, even though the intention to act has been
formed, the perceived SoA significantly decreases.

This hypothesis suggests that our subjective SoA considers an action as ‘initiated”
once the point of no return has been passed, rather than at the moment of physical
action execution. Therefore, it not only provides a retrospective perspective on the
role of the point of no return in shaping our SoA, but also offers additional evidence
in support of the existence of this critical temporal threshold, by demonstrating its
effect on the SoA, rather than solely its role in the veto mechanism.

A rough schematic representation of the sequence and timing of these events, includ-
ing the moment of intention detection, the point of no return, the time of generated
outcome, and the moment of actual action, is illustrated in Figure 2.2.
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2.5 Expectations

According to the hypothesis that we made, we anticipate that crossing the Point of
no return, in terms of the timing of the outcome -which in our experiment is sound-
will significantly alter the SoA experienced by the subject.

2.6 Experimental Design

The overarching aim of our experiment is to explore how the timing of an action’s
outcome, relative to the moment of decision, affects a person’s perceived SoA. To
facilitate this, we designed an experiment leveraging machine learning-based clas-
sifiers for detecting a participant’s intention to perform an action in real time. The
choice of classifier plays a pivotal role in this process, which will be elucidated in a
following subsection.

Our experimental design comprises two main stages: Preparatory Stage: Collecting
Subject Data and Classifier Training and the main Real-Time experiment.

In the Preparatory stage, we gather EEG data while participants spontaneously per-
form button press actions. Here, each button press synchronously triggers a sound,
simulating a natural action-outcome relationship. The collected data serve two crit-
ical purposes: Training participant-specific classifiers for real-time BCI operation,
and identifying the most discriminative EEG channels for each participant.

During the Real-Time stage, the classifiers trained in the preparatory stage are de-
ployed to detect the participants” intention to press the button in real time. Upon
intention detection, we trigger an auditory outcome at varying time intervals. This
manipulation allows us to assess the effect of timing of the outcome relative to the
action on the participants’ perceived SoA over the sound.

2.6.1 Classification Algorithm Selection

Within the context of the real-time BCI experiment, one of the crucial steps following
the EEG data acquisition involves extracting relevant features from the data and
feeding them into a classifier. The chosen classifier, trained on these features, plays
a critical role in discerning the current state of the subject. The classifier makes this
determination by distinguishing between two main classes:

¢ ’Idle’ or "No Intention” Class: This class is assigned when no significant pat-
tern suggestive of an impending action is detected in the EEG data. In essence,
when the classifier assigns this label, it indicates that no imminent action is
expected from the subject.

¢ 'Pre-movement’ or 'Intention’ Class: This class is assigned when the EEG data
exhibits a pattern that is indicative of an impending voluntary action. An as-
signment of this class by the classifier signifies that an action from the subject
is imminent.

The ability to accurately and swiftly classify these states is of paramount importance
for the successful operation and performance of the real-time BCI experiment. Swift
classification ensures minimal latency between the subject’s intent to act and the re-
sponse of the BCI, which is critical for maintaining a natural and seamless interaction
in the experiment
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There are numerous options for classifier selection when dealing with a binary clas-
sification problem, among which, the Support Vector Machine (SVM) and Linear
Discriminant Analysis (LDA) classifiers are two common choices, particularly suit-
able for real-time BCI systems due to their combination of accuracy, robustness, and
computational efficiency:

1. Support Vector Machine (SVM) Classifier: SVM is a powerful and widely-
used supervised learning method that can handle both linearly separable and
non-linearly separable data by using appropriate kernel functions. However,
SVM requires solving a quadratic programming problem, which can be com-
putationally expensive, especially for large datasets.

2. Linear Discriminant Analysis (LDA) Classifier: LDA is a supervised linear
classification technique that assumes linear separability and equal covariance
matrices for classes. It seeks to maximize the between-class variance while
minimizing the within-class variance. LDA has a closed-form solution, which
means that it can be solved directly, making it computationally efficient.

Inspired by the work of (Schultze-Kraft et al., 2021) and specially (Schultze-Kraft
et al.,, 2016) we have opted to utilize a Regularized Linear Discriminant Analysis
(RLDA) with automatic shrinkage as our classifier. This choice is motivated by sev-
eral key factors:

1. Improved performance: RLDA incorporates regularization, which helps re-
duce overfitting and enhances generalization capabilities. This leads to more
robust classification performance compared to standard LDA, particularly when
dealing with limited training data or high-dimensional feature spaces.

2. Automatic shrinkage: The automatic shrinkage feature in RLDA allows for
an optimized balance between the standard LDA and a purely diagonal dis-
criminant analysis. This optimization is achieved by estimating the optimal
shrinkage intensity from the data itself, leading to better classification results
without the need for manual tuning of hyperparameters.

3. Computational efficiency: Although RLDA with automatic shrinkage adds
some extra computational load compared to traditional LDA, it still maintains
a high level of computational efficiency, making it suitable for high-speed ap-
plications.

By selecting RLDA with automatic shrinkage as our classifier, we aim to leverage
its enhanced performance and adaptability, while maintaining the computational
efficiency required for successful real-time BCI implementation.

2.6.2 Feature Extraction

Feature extraction is a pivotal step in EEG data classification, determining the se-
lection of informative, independent, and most notably, discriminative features. The
noisy, high-dimensional nature of EEG data often necessitates a transformation of
the original signals into a more suitable feature space for achieving accurate clas-
sification results. Consequently, feature selection significantly influences classifier
performance. The subsequent sections detail the feature selection process for identi-
fying the specific classes of interest in this experiment.
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tracting the average signal value in the first 100 ms (from -1000 ms to

-900 ms) from all the data points in the entire segment. DownSam-

pling: averaging the values in consecutive 100 ms intervals, resulting

in 10 temporal features per segment and channel. Segment’s Feature

Vector: Concatenate the temporal features across all channels to form
a feature vector for each segment.

Feature Selection

Our real-time BCI experiment design’s feature selection approach draws extensively
from the work of Schultze-Kraft et al., 2021 and Schultze-Kraft et al., 2016. In line
with their studies, the feature selection process employs a downsampled version of
each data segment. Initially, each segment undergoes baseline correction concern-
ing its first 100 ms. Following this, data downsampling is achieved by averaging
the values within consecutive 100 ms intervals, generating 10 temporal features per
segment and channel. Thus, the chosen features comprise temporal averages of the
initial EEG data within each 100 ms interval, an effective strategy for capturing the
pre-movement brain activity integral to the success of this real-time BCI experiment
design.

Extract the Feature Vector

Building on the aforementioned feature selection approach, the following steps out-
line the feature extraction process:

1. Continuously stream and store the EEG data in a buffer at the trial’s com-
mencement.

2. Select a 1000-ms-long segment, updated continuously with incoming data in
20 ms steps, ending at the current time point.

3. Execute baseline correction on each segment by subtracting the average signal
value in the first 100 ms (from -1000 ms to -900 ms) from all data points within
the entire segment.

4. Downsample the baseline-corrected segments by averaging the values within
consecutive 100 ms intervals, yielding 10 temporal features per segment and
channel.



2.6. Experimental Design 13

[ A@ED ]
g -] H0
LA (D) |
[£@.2)]
Sliding Window Fisi= f"(f‘ 2) £(z.1)
£(z.2)
t —_— L/ (1.2) ] F(r) = :
° f(z,n)
L ]
@ Concatenated
fl({ ) Feature Vector
femy=| 2
_
Temporal Direction _ Jio(2.m)

Feature Vector
per Segment per Channel

FIGURE 2.4: Feature Concatenation Process.

5. Concatenate the temporal features across all selected channels to formulate a
comprehensive spatiotemporal feature vector for each segment.

Adhering to these steps ensures that the extracted feature vectors efficiently capture
the pre-movement brain activity in real-time. These feature vectors can then be used
as input to the classifier, allowing for accurate classification of the EEG data in this
real-time BCI experiment.

As illustrated in Figure 2.3, the general process of feature extraction during the on-
line experiment can be visualized. At each moment, with a resolution of 20 ms, a
feature vector is obtained for each segment and channel after performing baseline
correction and downsampling. The resulting feature vector for each segment and
channel can be represented as follows:

T

f(t,i) = [ Ailt,i) flti) - folti) ]

where f(t,1) is the feature vector at time ¢ for channel i, and f1(t,1), f2(t, 1), ..., fio(t, 1)
are 10 temporal features extracted from each segment of channel i at that specific
time. This feature vector will be continuously updated as new data is streamed into
the buffer, allowing for real-time classification of the EEG data in the BCI experi-
ment.

The next step in the process is to concatenate all feature vectors from each chan-
nel in order to create a single comprehensive feature vector for each segment. By
combining the features from all channels, the classifier can utilize both the spatial
information across channels and the temporal features extracted from each segment,
leading to improved classification performance.

The concatenated feature vector for a segment can be represented as follows:
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F(t) = [ £(t,1) £(t2) - f(t,n) ]

where F(t) is the concatenated feature vector at time f and # is the number of se-
lected channels and f(¢,i) , 1 < i < n, as stated before, is the feature vector at
time t for channel i. The number of selected channels for classification is n. This
concatenated feature vector will be continuously updated every 20 ms, as new data
is streamed into the buffer, allowing for real-time classification of the EEG data in
the BCI experiment. This contamination process is shown in Figure 2.4.

Thus, at any given time, there are 10n distinct features fed into the classifier, where
n is the number of channels and each channel contributes 10 temporal features.

2.6.3 Preparatory Stage: Collecting Subject Data and Classifier Training

The preparatory phase of the experiment is an integral and commonplace stage in
creating accurate and robust BCIs, particularly in machine learning-based classifica-
tions as demonstrated in studies like Schultze-Kraft et al., 2021 and Schultze-Kraft
et al., 2016. This stage involves two pivotal components: the collection of individual
subject data and the training of the classifier based on this data.

During this stage, participants are asked to engage in a voluntary action, specifically,
pressing a button. This self-paced action generates a computer-produced sound.
For enhanced congruency between the action and its corresponding outcome, a box
containing the button and the speaker is provided to participants (see Figure 2.5).
As participants perform these voluntary actions while their EEG signals are being
recorded, we collect the required data for the "Pre-movement’ or "Intention’ class. In
addition, periods of inactivity captured during this phase serve to provide the data
needed for the ‘Idle” or 'No Intention’ class. The data collected during these activities
encapsulates the unique patterns associated with each class for every individual,
thereby providing the foundation for subject-specific classifier training. The aim is
to tailor the classifier so it can accurately differentiate between these two classes for
each participant.

Moreover, the preparatory phase plays a crucial role in the optimal selection of EEG
channels. This step aims to identify the most informative and discriminative EEG
channels for each participant, optimizing the classifier’s performance. By focusing
on the channels that carry the most relevant information for each individual, we can
enhance the overall performance of the BCI system.

The following subsections will delve into the specifics of these steps, detailing the
process involved in collecting subject data, training the classifier, and selecting the
optimal EEG channels.

To reiterate:

¢ The Voluntary action in this context is the participant pressing a button, at a
time of his or her own choosing.

¢ The Outcome is the computer-generated sound as a result of the action.
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FIGURE 2.5: A participant in the resting state, ready to press the but-
ton on the box that also contains a speaker.

Gathering Data and Subject-Specific Classifier Training

In order to train the classifier to accurately distinguish between ‘Idle” or "No Inten-
tion” and "Pre-movement’ or ‘Intention” states, a substantial amount of subject data
needs to be collected. This is achieved during a dedicated preparatory stage of the
experiment where participants are engaged in a series of trials designed to elicit the
required brain activity patterns.

This phase of the experiment which consists of at least two blocks, each lasting for
about 8-10 minutes, depending on the number of button presses that occur can be
summarized as follows:

FIGURE 2.6: Timeline of the Prepratory Stage Experiment
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1. Resting State: Depending on whether the participant is left-handed or right-
handed, a box containing a button and a speaker is affixed on the table on the
side of the participant’s dominant hand (see Figure 2.5). Participants are in-
structed to place their dominant hand in a rest position on the box and be ready
to press the button in a manner that involves minimal movement, maintaining
the same physical pattern for pressing the button throughout the experiment.

2. Instruction: Participants are instructed to fixate on a cross in the middle of the
screen that appears at the start of each block until the end of the block. This
measure helps minimize eye movement artifacts during recording.

3. Block Start: Each block commences in a continuous manner, take 8-10 min.
After pressing the button at the end of the instructions, a red fixation cross
appears for a fixed time (2.5 sec), followed by a green fixation cross, signaling
the start of the first trial.

4. Voluntary Action: Participants are required to perform a voluntary button
press whenever they wish without any time constraint. The only restriction
is that the action should not be taken while the fixation cross is red, i.e., dur-
ing the inter-trial intervals which include the classifier-driven action inhibition
period.

5. Trial Start: Each trial starts when the fixation cross turns green.

6. Trial End: Each trial ends with the participant’s voluntary button press. The
color of the fixation cross changes to green and the next trial begins. During
this phase, the brain activity data collected will be used to train the classifier.

7. Inter-Trial Interval: Between every two trials, there is an inter-trial interval
(ITT) composed of a random delay, t;;, averaging 2 second, and the time re-
quired for playing the outcome sound initiated by the participant’s button
press. This structured interval prevents the participants from falling into a
fixed, rhythmic pattern of button pressing. The fixation cross remains red dur-
ing this interval, indicating that the participant should not press the button.

8. Block End: Once the participant has performed a sufficient number of but-
ton presses or after 8 minutes (whichever comes first), and no later than 10
minutes, a break page appears on the screen signaling the end of the block.
Participants can take this time to rest before they initiate the next block by
pressing the button. This structure ensures that the block does not extend be-
yond a set limit, preventing potential fatigue and maintaining the quality of
data collected.

This protocol outlines the procedure for collecting subject data during the prepara-
tory stage of the experiment. The data collected through this process will subse-
quently be used for training the classifier in a subject-specific manner.

Optimal EEG Channel Selection

For effective differentiation between the Idle” or "No Intention” and "Pre-movement’
or 'Intention’ states, the selection of the most discriminative EEG channels for each
participant is vital. This selection process constitutes the second part of this prepra-
tory phase. The EEG data collected during the ‘Gathering Data and Subject-Specific
Classifier Training” phase is analyzed using various feature extraction and channel
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ranking methods. By selecting the most informative channels unique to each indi-
vidual, the performance of the classifier can be optimized, enhancing the accuracy
and robustness in distinguishing between the two classes during the main experi-
ment.

However, in the landscape of research, there are varying approaches to channel se-
lection. Some studies choose a set of pre-established electrodes, typically those that
cover areas of the brain known for their strong correlation with intentional neural
activity, such as the motor area. On the other hand, some researchers opt for an indi-
vidualized approach, selecting the channels that yield the most significant impact on
the classification for each participant. This latter approach typically happens after
an evaluation of the trained classifier.

In our study, we adopt an individualized approach and select channels based on
their correlation with each subject’s actions. We utilize 17 passive electrodes posi-
tioned to cover the primary and pre-motor cortex, where the RP typically appears,
with additional electrodes scattered around to capture more global brain activity.
This approach aligns with our primary objective, which is to identify the channels
that are most closely correlated with the subjects” actions, rather than focusing on
understanding the nature of the RP itself.

2.6.4 Main Real-Time Experiment

In the main real-time experiment phase, we employ a setup similar to the prepara-
tory stage, but with some critical modifications. Firstly, EEG data are collected in
real-time and instantaneously fed into the classifier, which has been specifically
trained for each participant. This process allows us to detect the neural activity
related to the intention to press the button (the 'Pre-movement’ class) in real-time.
Secondly, the outcome - a computer-produced sound - is initiated at various time
points across different trials, based on the classifier’s output. A third key modifi-
cation in this phase is that, at the end of each trial, participants rate their SoA for
that specific trial on a scale. This direct measure provides valuable insight into how
participants perceive their control over the timing of the outcome sound, relative to
their voluntary button press.

Through this tailored experimental setup, we aim to investigate how the temporal
relationship between a voluntary action, its outcome, and the detection of the in-
tention to act influences the perceived SoA. This approach aligns with our research
hypothesis, probing into the role of the "point of no return’—the moment around 200
ms before a voluntary action when the intention to act has become irreversible—in
shaping the perception of agency. By introducing variability in the timing of out-
comes and collecting participants” SoA, we anticipate generating a rich data set to
shed light on these intricate relationships.

The main experimental design, which consists of at least two blocks, each lasting for
about 8-10 minutes, depending on the number of button presses that occur can be
summarized as follows:

1. Resting State:Depending on whether the participant is left-handed or right-
handed, a box containing a button and a speaker is affixed on the table on the
side of the participant’s dominant hand. Participants are instructed to place
their dominant hand in a rest position on the box and be ready to press the



18

2 Hypothesis and Experimental Design

3

[
Initial = , SoA
o ))
Instructions ‘ )

-

tOm‘cmue = F (tlntenriun) .

Intention

FIGURE 2.7: Timeline of the Time Experiment; Only for First Trial

button in a manner that involves minimal movement, maintaining the same
physical pattern for pressing the button throughout the experiment.

. Instruction: As in the preparatory stage, participants are instructed to fixate

on a cross in the middle of the screen throughout each block to minimize eye
movement artifacts during recording. At the end of the instruction page, they
are asked to press the button to start the experiment.

. Block Start: Each block commences in a continuous manner, similar to the

preparatory stage. After pressing the button at the end of the instructions, a
red fixation cross appears for a fixed time (2.5 sec), followed by a green fixation
cross, signaling the start of the first trial.

. Voluntary Action: Participants are required to perform a voluntary button

press whenever they wish without any time constraint. The only restriction
is that the action should not be taken while the fixation cross is red, i.e., dur-
ing the inter-trial intervals which include the classifier-driven action inhibition
period.

. Trial Start: Each trial starts when the fixation cross turns green.

. Real-time Classification: From the moment the experiment starts, the last 1000

ms window of the participant’s EEG data is continuously fed into the trained
classifier in 20 ms steps. The classifier output determines the participant’s
state, i.e., either in an "Idle” or an "Intention’ state. If the classifier output clas-
sifies an "Intention” state, the outcome sound is initiated at a varying time in
different trials before the actual action.

. Outcome: The outcome is a simple computer-generated sound that is intended

to occur synchronously with the actual action, i.e., the button press. However,
it’s important to note that this synchrony is natural rather than literal; techni-
cal limitations and inherent processing delays mean that there will be always a
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10.

11.

minor delay between the button press and the initiation of the sound. This de-
lay mimics the kind of synchrony typically expected in real-world interactions
between mechanical actions and their outcomes

SoA Explicit Report: After the participant presses the button or the outcome
sound occurs, whichever happens later, they are asked to rate their SoA for the
specific trial on a scale. A page for this rating appears on the screen, which
participants should answer using the mouse provided for this purpose.

Trial End: Each trial ends once the participant has submitted their SOA assess-
ment.

Inter-Trial Interval: Following the SoA report, another button press prompts
the appearance of a red fixation cross for a random delay with an average du-
ration of 1.5 sec. This inter-trial interval prevents participants from falling into
a fixed, rhythmic pattern of button pressing and guarantees a 1000 ms feature
extraction temporal window. The fixation cross remains red during this inter-
val, indicating that the participant should not press the button. Afterward, it
turns green, signaling the start of the next trial.

Block End:Once the participant has performed a sufficient number of button
presses or after 8 minutes (whichever comes first), and no later than 10 min-
utes, a break page appears on the screen signaling the end of the block. Partic-
ipants can take this time to rest before they initiate the next block by pressing
the button.

The Figure 2.7 illustrates the timeline for the first trial following the start of the block.
This provides a visual representation of the process outlined above, showing the
sequence of events as they unfold in real-time.
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3. Results, Discussion and Future
Plan

3.1 Some Extra Practical Considerations and Challenges

Over the course of our research journey, due to time constraints, our primary focus
was on the preparatory stage of our experimental design. This stage serves as a
proof of concept, indicating that we are on the correct path towards fulfilling our
research objectives. This thesis does not include results from the main real-time
experiment phase. However, the ensuing sections provide a detailed discussion of
the findings from our preparatory stage, their implications, and outline future plans
for completing the subsequent stages of this experiment.

EEG Recordings

During the initial phase of our study, we consistently gathered EEG data via 17 pas-
sive electrodes (F3, Fz, F4, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2,
CP6, Oz). These were strategically positioned in line with the globally recognized
10-20 system. The exact montage of these electrodes is illustrated in Figure 3.1 To
track horizontal ocular movements, we deployed an external electrode, and for the
possibility of offline re-referencing, two additional electrodes were affixed to the left
and right mastoids. For the online reference, we employed the AFz electrode and
designated the right mastoid as the grounding electrode. This data was meticulously
recorded with the aid of the ENOBIO 20 5G system, which operates at a sampling
rate of 500 Hz, along with a medical-grade touch-proof adapter. Both these tools
were sourced from Neuroelectrics, based in Barcelona, Spain.

More About Outcome Sound

We prepared an outcome sound, which is a simple, computer-generated tone pro-
duced using PsychToolbox. After several iterations, we settled on a quasi-periodic
sound. It was created from a linear combination of four frequencies: 500 Hz, 700 Hz,
900 Hz, and 1000 Hz. The sound had a duration of 500 ms and a sampling rate of
22100 Hz.

Timing of Events

Accurately capturing the timing of events was an essential aspect of our experimen-
tal setup. In particular, we needed to precisely track the timing of each button press.
To ensure this, we employed a multi-method approach.

To accurately capture and mark each button press event within the EEG data, we uti-
lized the TCP/IP protocol, as facilitated by the Neuroelectrics Instrument Controller
(NIC). This system enables the real-time transmission of each button press event to
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FIGURE 3.1: EEG Electrode Montage for Prepratory Stage

the host PC, where it is annotated as a marker on the corresponding EEG data. The
NIC software ensures synchronization between the EEG data and the event markers,
even in the context of inherent system latencies. Thus, every button press is accu-
rately timestamped in the EEG data stream, providing us with a reliable record of
participant actions in relation to their brain activity.

In addition to the use of TCP/IP protocol for button press event tracking, we em-
ployed a second method to further increase the precision of timing. We incorpo-
rated a dedicated Transistor-Transistor Logic (TTL) circuit, as offered by the Enobio
system, into our setup. This circuit is designed to synchronize the delay from the
moment a button press is captured to the moment it is recorded on the host PC’s
EEG data. This is achieved by aligning this delay with the time difference between
the capture of EEG signals by the Enobio electrodes and their subsequent recording
on the host PC via the NIC interface.

The functionality of this TTL circuit is based on the reception of a TTL signal that
NIC can display through one of its EEG channels using a dedicated TTL adapter.
This approach requires the presence of a parallel port on the computer running the
external software that controls the experiment. By configuring the connections ap-
propriately, a TTL input signal can be sent and recognized whenever a TTL pulse is
dispatched. The adapter’s TTL input is set to recognize signals between 3.3V and
5V. Once received, these signals are synchronized with the EEG data stream and dis-
played on the corresponding EEG channel. However, it is important to note that
these signals are not registered as markers in the penultimate column of the .easy
files - the detection and offline analysis of the TTL pulses is the responsibility of the
user.

Additionally, we included a system for the experimenter to visually monitor each
button press. Using a different parallel port on the same computer, each button press
activated an LED to flash, serving as a visible signal to the experimenter outside the
room. Furthermore, the total number of button presses was continuously displayed
on the main PC. This information allowed us to adapt the experiment in real-time.
For instance, if we did not reach the desired number of button presses, we could
extend the current block without interrupting the participant or add another extra
block.
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Upon comparing the TCP/IP and TTL methods, we observed that the delay intro-
duced by the TCP/IP protocol was always under 26 ms, which equates to less than
13 samples at the 500 Hz frequency of the EEG device. Given the 20 ms steps of
our sliding feature extraction window, our system effectively achieved a temporal
resolution greater than 40 ms. Thus, the delay introduced by the TCP/IP protocol is
unlikely to significantly affect our results.

After careful consideration and facing some challenges with the TTL circuit, we
adopted the TCP/IP method as our main approach for capturing the time of but-
ton presses, for this preparatory stage.

This meticulous attention to timing accuracy underpins our objective to continu-
ously monitor and classify neural signals, thereby reliably detecting the participant’s
intention to press the button.

3.2 Results

We collected data from 5 participants (3 Male and 2 Female; age: 22-29) for the
Preparatory Stage of the experiment. The subsequent steps were focused on trans-
forming this collected EEG data into a labeled version suitable for classifier training,
using a series of processes implemented via custom MATLAB scripts

During the Preparatory Stage, the continuous EEG data underwent a two-stage
transformation into a format suitable for classifier training. In the first stage, the
raw EEG data was segmented into trials based on participants’ button presses, re-
sulting in trial lengths of several seconds each. In the second stage, these trials were
further divided into 1000 ms sliding windows. Following the segmentation, we as-
signed each window to either an idle or pre-movement state, shaping the temporal
structure within the EEG data.

Once segmented, each 1000 ms window was then transformed into a feature space.
We applied a baseline correction and then averaged the values within each 100 ms
interval of the window, producing a set of temporal features for each segment and
channel. Each set of features was subsequently labeled according to its respective
class, resulting in a labeled feature set. This set formed the foundation for our su-
pervised learning approach, where the classifier was trained to identify and discrim-
inate between patterns associated with each class.

Once the EEG data was successfully transformed into a labeled feature set, we em-
ployed this data to train a classifier. This training process was unique, particularly
due to our use of Linear Discriminant Analysis (LDA) classifier, and the way we
automated the process of finding the optimal gamma (regularization) parameter.
We accomplished this by implementing a leave-one-out cross-validation scheme, it-
eratively training the LDA model for each fold across a range of gamma values.
The gamma that provided the highest cross-validation accuracy was then chosen as
the best gamma and used to train the LDA model. This automated process signifi-
cantly reduced the need for manual tuning and ensured an optimal and generaliz-
able model.

The performance of the classifier was not only assessed through the mean cross-
validation accuracy but also through the weights assigned to each EEG channel by
the LDA model. This analysis gave us valuable insights into the relative importance
of each channel for distinguishing between the "Idle” and "Pre-movement’ classes.
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Through this strategic and automated approach to data processing and classifier
training, we efficiently transformed the raw EEG data into insightful analysis of the
participant’s brain activity. This process laid the groundwork for the real-time stage
of the experiment, where the trained classifier will be employed for real-time BCI
operation. It also informed us about the most discriminative EEG channels for each
participant, which would be instrumental for improving the accuracy and efficiency
of the real-time BCI operation.

The primary accuracy of the trained classifier for each participant, based on the data
gathered from their performance during the preparatory stage, and the time it takes
for the classifier to be trained is shown in Table 3.1.

TABLE 3.1: Mean accuracy, training time and optimal selected chan-
nels for Classifiers Trained on Different Participants

Participant Number Mean Accuracy Training Time (Sec) Most Influential Channels

P1 0.91195 65.693 T7,C3,C4,CP1, Fz
P2 0.9016 61.8430 17 ,C3, CP6, EC5, FC6
P3 0.9151 64.9135 CP1,T8,C3,C4,F3
P4 0.9336 71.0107 T8, Fz, C4,Cz, FC5
P5 0.8723 69.1088 F3,C3,T7,Cz, C4

The classifier accuracies presented in Table 3.1, obtained from each participant dur-
ing the Preparatory Stage of our experiment, demonstrate promising results. The
high mean accuracy values, computed through a leave-one-out cross-validation scheme,
indicate that the classifier performs well in distinguishing between the 'Idle” and
"Pre-movement’ states. In this process, for each participant’s EEG data, one sample
was left out in each iteration, and the classifier was trained on the remaining data
and tested on the left-out sample. This was repeated until each sample had been
used for testing exactly once. It is important to note that while these accuracy esti-
mates provide valuable insights, they do not necessarily reflect the real-time classifi-
cation performance that will be achieved in the later stages of the experiment. This is
due to the potential influence of various factors not captured in the cross-validation
process. Nevertheless, the successful performance in the preparatory stage builds
confidence for the upcoming real-time experiment phase.

3.3 Future Plan

We are presently in the process of coding a simulation for the real-time experiment,
to evaluate the performance of participant-specific classifiers in a real-time context,
albeit in an offline mode. To achieve this, we are generating overlapped feature
vector segments, identical to those that will be used in the real-time experiment.
The objective is to determine the earliest point in time at which the classifier can
detect the intention class and the corresponding accuracy.

For each participant-specific classifier, we aim to generate a graph that indicates the
average accuracy of imminent button press detection at a 1-second period leading
up to the actual button press. If we manage to identify an imminent button press a
sufficient time prior to the actual event with satisfying accuracy, we can then proceed
to the next step — the main real-time experiment.
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In terms of the main real-time experiment, it is crucial to emphasize that the prepara-
tory stage, including data collection, classifier training, and the aforementioned sim-
ulated real-time experiment, should be performed for each participant prior to initi-
ating the main real-time experiment. We aim to conduct all these stages in a single
session.

This strategy is justified by the data-dependent nature of our technique. The col-
lected data, and consequently, the performance of the trained classifier, could be
influenced by various factors, including the timing of the data collection. Therefore,
by training the data-based classifier and employing it in the same session, we aim
to minimize the impact of time-related variability on the model’s performance. This
approach will enhance the reliability of our results and ensure the efficiency of the
real-time BCI operation.

3.4 Discussion and Conclusion

The satisfactory mean accuracies of the participant-specific classifiers, trained with
data collected in the preparatory stage, provide a promising start for our experiment.
However, transitioning from this preparatory phase to the real-time experiment in-
troduces new challenges, with timing emerging as a critical aspect.

In our real-time experimental design, the main task is to estimate the timing of an
imminent action as soon as the intention is detected from a participant (indicated
by the classifier output). We aim to initiate the outcome sound prior to the actual
action, with the exact initiation point varying within the experiment.

We acknowledge that the performance measured during the preparatory stage might
not fully reflect the performance during the real-time experiment due to the dynamic
and real-time nature of the data in the latter. To gain a more accurate estimation of
the expected accuracy in real-time, we plan to simulate the real-time experiment, as
outlined in our future plans. This simulation will allow us to investigate at what
point within a segment the classifier output reaches a level of confidence that satis-
fies our requirements.

Achieving a high-confidence classifier output at least 300 ms before the actual action
is particularly crucial. This lead time allows for the initiation of the outcome sound
within a reasonable time frame (i.e., from -250 ms to +250 ms relative to the actual
action time). This timing constraint is an essential factor for testing our hypothesis
and achieving our experiment’s desired results.

Our journey of investigating SoA through a neuroscientific approach and setting up
a BCI system for it has proven to be an ambitious yet rewarding endeavor. Each
stage of the process has deepened our knowledge and understanding of this com-
plex field, presenting both challenges and invaluable learnings. We look forward
to the upcoming real-time experiment phase with eagerness and optimism, hopeful
that our work will contribute significantly to the broader understanding of SoA and
pave the way for further discoveries in neuroscience and BCI technology.
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A. Implicit Methods for Measuring
SoA

A recent review paper by (Wen and Imamizu, 2022) provides a comprehensive list of
the primary methods used to implicitly measure the SoA. To provide a more compre-
hensive understanding, we will discuss three such methods in detail in the following
sections.

A.0.1 Intentional Binding

To address the challenge of explicitly measuring the SoA (SoA), (Haggard, Clark,
and Kalogeras, 2002) developed an innovative approach for implicitly assessing it.
Participants observed a rotating clock hand on a screen while making judgments
about the timing of their actions and the resulting effects. The experiment consisted
of four blocks, with baseline conditions in which participants performed a voluntary
action or heard a beep and judged the timing of either event. In operant conditions,
participants performed voluntary key presses that produced a beep after 250ms, and
they judged the timing of the key press or the subsequent tone.

Comparing the perceptual time of action and outcome in baseline and operant con-
ditions revealed that the perceptual times of action and outcome tended to converge
when participants” key presses resulted in a tone (operant condition). This phe-
nomenon was named "Intentional binding." When voluntary movements were re-
placed by TMS-induced twitches, a ‘repulsion’ effect occurred, with an increased
perceived interval between action and outcome. (Haggard, Clark, and Kalogeras,
2002) suggested that the brain mechanism responsible for action-outcome binding
may be crucial for a normal SoA.

A.0.2 Sensory Attenuation

Sensory attenuation is a phenomenon suggests that individuals have an inherent
understanding of their own actions, and that this understanding influences the per-
ception of sensory feedback. A classic example of sensory attenuation is the reduced
ticklishness people experience when they touch themselves, compared to when the
touch is applied by someone else. This difference in perception is thought to be
closely related to the SoA (Blakemore, Wolpert, and Frith, 1998).

To assess sensory attenuation, researchers often use tactile stimuli and a force-matching
task, where participants feel a force (pressure) and reproduce an equivalent pressure
on themselves (self-touch) or via a pressure device (external touch). Sensory atten-
uation can be calculated as the ratio or difference between reproduced forces in the
external touch and self-touch conditions. This method provides an indirect mea-
sure of S0A, as self-produced effects are less "surprising,”" and the degree of surprise
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FIGURE A.1: Temporal schematic of intentional binding effect.

elicited by an effect can serve as an indicator of the SoA over that effect (Wen and
Imamizu, 2022).

A.0.3 Visual Attention (Mainly from (Wen and Imamizu, 2022))

Measuring the SoA (SoA) implicitly through visual attention involves analyzing
how attention is drawn to controllable objects or events. When control over an ob-
ject or event is ambiguous, attention is automatically attracted to the controllable
aspects. Studies show that reaction time to identify avatars whose motions match
participants” body movements is shorter, highlighting the salience of SoA in allo-
cating visual attention. Neural measures of attention, such as steady-state visual
evoked potential (SSVEP), examine visual attention towards controllable and un-
controllable objects. Research demonstrates that control over objects automatically
attracts visual attention. Attention to controllable objects also improves their visual
detection, shortening detection time as control increases.

Control detection tasks are useful for investigating SoA in ambiguous environments
for both healthy participants and those with impaired decision-making processes.
SSVEPs are primarily modulated by top-down selective attention, while event-related
potentials (ERPs) serve as indexes of early bottom-up attention. Larger ERP am-
plitudes occur when events are rare and salient, and they are suppressed when
events are self-triggered by a participant (agency condition) compared to computer-
triggered (non-agency condition). The attraction of attention to a loss or gain of SoA
depends on whether control has already been established in an environment. When
control is uncertain, detecting control attracts attention to controllable objects. Con-
versely, when SoA is expected, the absence of SoA is perceived as unexpected and
attracts more attention than conditions with SoA.
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B. Real-Time RP Detection
Challenges

The real-time detection of Readiness Potential (RP) presents significant challenges
due to the complexity and subtlety of brain signals, as well as the interpretive com-
plexities associated with RP’s nature. Accurately isolating and identifying the RP
amidst ongoing neural activity demands precision and technological finesse, while
the inherent variability within the data adds to the difficulty. Furthermore, differing
scientific opinions about the nature of RP signal complicates the detection process.
Addressing these challenges to enhance RP detection reliability is a fundamental
step towards a deeper understanding of human volition.

Readiness Potential; It's Amplitude and Shape

As the RP signal is an order of magnitude weaker than the noise, usually averaging
many (>30) trials has been necessary to reveal the RP and examine its properties.
This makes its online detection problematic.

Literature review As (Abou Zeid and Chau, 2015; Abou Zeid, Rezazadeh Sereshkeh,
and Chau, 2016) and (Lew et al., 2012) have highlighted, the detection of RP in on-
line single trials is challenging due to its nature as a slow cortical potential (SCP)
close to zero-frequency. The presence of the RP in single trials is often elusive, as it
occurs concurrently with task-unrelated brain activity. This makes the RP typically
invisible in single trials and difficult to identify. However, it has been demonstrated
((Garipelli, Chavarriaga, and R. Millan, 2011)) that narrow band filtering of EEG
signals in the 0.1-1 Hz range can help to enhance the detection of the RP, making it
more discernible despite its elusive presence in single trials.

Readiness Potential; False Positive

The challenge of false positives in RP detection affects the reliability and validity
of the obtained results. Researchers attempt to mitigate this issue by employing re-
fined feature extraction and optimized signal preprocessing techniques to enhance
detection accuracy and deepen the understanding of voluntary actions. As a re-
sult, it remains uncertain whether the (averaged) RP merely represents a de-noised
version of the signal present in each trial or an artifact of trial averaging. This uncer-
tainty highlights the potential advantages of utilizing classification methods based
on multi-channel signal input and assigning the entire data set to a state or class of
pre-movement, as it appears to offer a more reliable approach compared to relying
solely on the traditional readiness potential.
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Early- versus Late-Decision Accounts of the Readiness Potential (RP)/
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Readiness Potential; Onset or Buildup?

An intriguing question to consider is: Should the onset of RP or the crossing of a
threshold during its buildup be regarded as the primary cause for voluntary move-
ment? This inquiry delves into the nuances of the neural processes underlying vol-
untary actions and could offer valuable insights into the mechanisms governing our
movements.

Readiness Potential; Eye movement Artefact

A significant challenge in detecting RP signals within BCI systems is the interfer-
ence caused by eye movements. In particular, horizontal eye movements can pro-
duce lateralized low-frequency shifts in EEG channels that closely resemble later-
alized readiness potentials (LRPs, which are a type of readiness potential that can
be observed in preparation for a lateralized movement), which may substantially
impact the detection of low-amplitude RP signals. This issue raises concerns that
the BCI classifier could be vulnerable to EOG artifacts or even be controlled by left
versus right eye movements ((Krauledat et al., 2004)). To counteract these effects,
researchers typically implement computational compensatory preprocessing tech-
niques and provide participants with behavioral instructions, such as maintaining
fixation during the experimental setup. In the following section, we will conduct a
literature review on this topic to gain a deeper understanding of the challenges and
potential solutions related to eye movement artifacts in RP detection.
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C. Strategies for Optimal
Classification in Real-Time BCI

Classifying ‘Idle’ or '‘No Intention” and 'Pre-movement’ or ‘Intention” states in a real-
time BCI setup demands the implementation of strategic approaches to ensure the
classification process’s accuracy and robustness. Since intention detection via classi-
fication fundamentally involves RP signals, the strategies are often similar to those
outlined in Section ??, Real-Time RP Detection Challenges.

C.0.1 Gaze-Stabilized Trial Initiation

To reduce the influence of eye movement artifacts on intention detection, presenting
a central fixation point at the start of each trial is often employed. As explored in sec-
tion 2.1.2, this practice has been implemented in several studies including (Lew et
al., 2012) and (Schultze-Kraft et al., 2016) among others. This ensures that eye move-
ment artifacts that can significantly affect classification accuracy are minimized.

C.0.2 Defining a Feature Extraction Temporal Window

The establishment of a precise sliding time window is crucial for continuously an-
alyzing neural activity over time. The update rate of this window, as shown in
(Schultze-Kraft et al., 2016) with a 10 ms resolution, must balance the classifier’s pre-
cision, computational capacity, and data accessibility. This technique enables contin-
uous monitoring and classification of neural signals.

C.0.3 Classifier-Driven Action Inhibition Period

Several studies have emphasized the significance of an action inhibition period in
their experimental designs. This period typically ranges from 1 to 2 seconds, de-
pending on the feature extraction temporal window, and provides the classifier suf-
ticient time to extract features and accurately detect the states.

For instance, (Schultze-Kraft et al., 2016) maintained a 2-second gap between the
start of the trial and the onset of movement. Participants were instructed to wait
about 2 seconds before pressing a button with their right foot after a "go signal"
appeared on the screen. Similarly, in (Schultze-Kraft et al., 2021), participants were
instructed to wait approximately 2 seconds before pressing a pedal after the start of a
trial, signaled by a white circle appearing on the screen. (Lew et al., 2012) instructed
subjects to initiate the movement whenever they wished, but not before 2 seconds
after the presentation of an auditory cue. (Krauledat et al., 2004) instructed subjects
to press keys with their index and little fingers in a deliberate order and at a pace
of approximately 2 seconds. This action inhibition period ensures the classifier can
effectively analyze the data and differentiate between the movement and idle states,
contributing to the overall performance of the intention detection algorithm.



C Strategies for Optimal Classification in Real-Time BCI 33

By implementing these strategies, we aim to ensure reliable and accurate classi-
fication between ‘Idle’ or 'No Intention” and "Pre-movement’ or ‘Intention” states,
thereby enhancing the performance and success rate of real-time BCI experiments.
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